Analytical Chemistry Of The Actinide Elements

International Series Of Monographs On Analytical Chemistry Alfred J Moses | 3e4 d3ffa8679017c5e038415d6e71bfc

The Chemistry of the Actinide and Transactinide Elements (3rd ed., Volumes 1-5)

Measurement of Actinide Neutron Cross Sections

The Chemistry of the Actinide and Transactinide Elements (3rd ed., Volumes 1-5)

Treatise on Analytical Chemistry

Computational Methods in Lanthanide and Actinide Chemistry

Analytical Chemistry of Molybdenum and Tungsten

The Chemistry of the Actinide and Transactinide Elements (Set Vol.1-6)

Principles of Field Ionization and Field Desorption Mass Spectrometry

Analytical Chemistry of the Elements. (Section A: Systematic Analytical Chemistry of the Elements)

Organic Reagents in Metal Analysis

Analytical Chemistry for Technicians

Treatise on Analytical Chemistry

Soviet Research on the Lanthanide and Actinide Elements 1949-1957

Experimental and Theoretical Approaches to Actinide Chemistry

Soviet Research on the Lanthanide and Actinide Elements Radiation Problems

Associated with the Handling of the Actinide Elements

Analytical Chemistry of Organic
The Chemistry of the Actinide and
Measurement of Actinide Neutron Cross Sections

The first edition of this work appeared almost thirty years ago, when, as we can see in retrospect, the study of the actinide elements was in its first bloom. Although the broad features of the chemistry of the actinide elements were by then quite well delineated, the treatment of the subject in the first edition was of necessity largely descriptive in nature. A detailed understanding of the chemical consequences of the characteristic presence of $5f$ electrons in most of the members of the actinide series was still for the future, and many of the systematic features of the actinide elements were only dimly apprehended. In the past thirty years all this has changed. The application of new spectroscopic techniques, which came into general use during this period, and new theoretical insights, which came from a better understanding of chemical bonding, inorganic chemistry, and solid state phenomena, were among the important factors that led to a great expansion and maturation in actinide element research and a large number of new and important findings. The first edition consisted of a serial description of the individual actinide elements, with a single chapter devoted to the six heaviest elements (lawrencium, the heaviest actinide, was yet to be discovered).
Less than 15% of the text was devoted to a consideration of the systematics of the actinide elements.

The Chemistry of the Actinide and Transactinide Elements (3rd ed., Volumes 1-5) Experimental and Theoretical Approaches to Actinide Chemistry A review of contemporary actinide research that focuses on new advances in experiment and theory, and the interplay between these two realms Experimental and Theoretical Approaches to Actinide Chemistry offers a comprehensive review of the key aspects of actinide research. Written by noted experts in the field, the text includes information on new advances in experiment and theory and reveals the interplay between these two realms. The authors offer a multidisciplinary and multimodal approach to the nature of actinide chemistry, and explore the interplay between multiple experiments and theory, as well as between basic and applied actinide chemistry. The text covers the basic science used in contemporary studies of the actinide systems, from basic synthesis to state-of-the-art spectroscopic and computational techniques. The authors provide contemporary overviews of each topic area presented and describe the current and anticipated experimental approaches for the field, as well as the current and future computational chemistry and materials techniques. In addition, the authors explore the combination of experiment
and theory. This important resource: Provides an essential resource that reviews the key aspects of contemporary actinide research. Includes information on new advances in experiment and theory, and the interplay between the two. Covers the basic science used in contemporary studies of the actinide systems, from basic synthesis to state-of-the-art spectroscopic and computational techniques. Focuses on the interplay between multiple experiments and theory, as well as between basic and applied actinide chemistry. Written for academics, students, professionals and researchers, this vital text contains a thorough review of the key aspects of actinide research and explores the most recent advances in experiment and theory.

Treatise on Analytical Chemistry

Computational Methods in Lanthanide and Actinide Chemistry The Chemistry of the Actinide and Transactinide Elements is a contemporary and definitive compilation of chemical properties of all of the actinide elements, especially of the technologically important elements uranium and plutonium, as well as the transactinide elements. In addition to the comprehensive treatment of the chemical properties of each element, ion, and compound from atomic number 89 (actinium) through to 109 (meitnerium), this multi-volume work has specialized and definitive
chapters on electronic theory, optical and laser fluorescence spectroscopy, X-ray absorption spectroscopy, organoactinide chemistry, thermodynamics, magnetic properties, the metals, coordination chemistry, separations, and trace analysis. Several chapters deal with environmental science, safe handling, and biological interactions of the actinide elements. The Editors invited teams of authors, who are active practitioners and recognized experts in their specialty, to write each chapter and have endeavoured to provide a balanced and insightful treatment of these fascinating elements at the frontier of the periodic table. Because the field has expanded with new spectroscopic techniques and environmental focus, the work encompasses five volumes, each of which groups chapters on related topics. All chapters represent the current state of research in the chemistry of these elements and related fields.

Analytical Chemistry of Molybdenum and Tungsten The only introduction into the exciting chemistry of Lanthanides and Actinides. The book is based on a number of courses on "f elements" The author has a long experience in teaching this field of chemistry Lanthanides have become very common elements in research and technology applications; this book offers the basic knowledge The book offers insights into a vast range of applications, from lasers to synthesis The
Inorganic Chemistry: A Textbook series reflects the pivotal role of modern inorganic and physical chemistry in a wholerange of emerging areas, such as materials chemistry, greenchemistry and bioinorganic chemistry, as well as providing a solid grounding in established areas such as solid state chemistry, coordination chemistry, main group chemistry and physical inorganicchemistry. Lanthanide and Actinide Chemistry is a one-volume account of the Lanthanides (including scandium and yttrium), the Actinides and the Transactinide elements, intended as an introductory treatment for undergraduate and postgraduate students. The principal features of these elements are set out in detail, enabling clear comparison and contrast with the Transition Elements and Main Group metals. The book covers the extraction of the elements from their ores and their purification, as well as the synthesis of the man-made elements; the properties of the elements and principal binary compounds; detailed accounts of their coordination chemistry and organometallic chemistry, from both preparative and structural viewpoints, with a clear explanation of the factors responsible for the adoption of particular coordination numbers; spectroscopy and magnetism, especially for the lanthanides, with case studies and accounts of applications in areas like magnetic resonance imaging, lasers and luminescence; nuclear separations and problems in waste disposal for
the radioactive elements, particularly in the context of plutonium. Latest developments are covered in areas like the synthesis of the latest man-made elements, whilst there is a whole chapter on the application of lanthanide compounds in synthetic organic chemistry. End-of-chapter questions suitable for tutorial discussions are provided, whilst there is a very comprehensive bibliography providing ready access to further reading on all topics.

The Chemistry of the Actinide and Transactinide Elements (Set Vol.1–6)

Principles of Field Ionization and Field Desorption Mass Spectrometry

Analytical Chemistry of the Elements. (Section A: Systematic Analytical Chemistry of the Elements) The fourth edition of "The Chemistry of the Actinide and Transactinide Elements" comprises all chapters in volumes 1 through 5 of the third edition (published in 2006) plus a new volume 6. To remain consistent with the plan of the first edition, "to provide a comprehensive and uniform treatment of the chemistry of the actinide [and transactinide] elements for both the nuclear technologist and the inorganic and physical chemist," and to be consistent with the maturity of the field, the fourth edition is organized in three parts. The first group of chapters follows
the format of the first and second editions with chapters on individual elements or groups of elements that describe and interpret their chemical properties. A chapter on the chemical properties of the transactinide elements follows. The second group, chapters 15-26, summarizes and correlates physical and chemical properties that are in general unique to the actinide elements, because most of these elements contain partially-filled shells of 5f electrons whether present as isolated atoms or ions, as metals, as compounds, or as ions in solution. The third group, chapters 27-39, focuses on specialized topics that encompass contemporary fields related to actinides in the environment, in the human body, and in storage or wastes. Two appendices at the end of volume 5 tabulate important nuclear properties of all actinide and transactinide isotopes. Volume 6 (Chapters 32 through 39) consists of new chapters that focus on actinide species in the environment, actinide waste forms, nuclear fuels, analytical chemistry of plutonium, actinide chalcogenide and hydrothermal synthesis of actinide compounds. The subject and author indices and list of contributors encompass all six volumes.

Organic Reagents in Metal Analysis The f-elements and their compounds often possess an unusually complex electronic structure, governed by the high number of electronic
states arising from open f-shells as well as large relativistic and electron correlation effects. A correct theoretical description of these elements poses the highest challenges to theory. Computational Methods in Lanthanide and Actinide Chemistry summarizes state-of-the-art electronic structure methods applicable for quantum chemical calculations of lanthanide and actinide systems and presents a broad overview of their most recent applications to atoms, molecules and solids. The book contains sixteen chapters, written by leading experts in method development as well as in theoretical investigations of f-element systems. Topics covered include: Relativistic configuration interaction calculations for lanthanide and actinide anions Study of actinides by relativistic coupled cluster methods Relativistic all-electron approaches to the study of f-element chemistry Relativistic pseudopotentials and their applications Gaussian basis sets for lanthanide and actinide elements Applied computational actinide chemistry This book will serve as a comprehensive reference work for quantum chemists and computational chemists, both those already working in, and those planning to enter the field of quantum chemistry for f-elements. Experimentalists will also find important information concerning the capabilities of modern quantum chemical methods to assist in the interpretation or even to predict the outcome of their
Analytical Chemistry for Technicians

The Department of Energy is being called upon to clean up its legacy of waste from the nuclear complex generated during the cold war period. Los Alamos National Laboratory is actively involved in waste minimization and waste stream polishing activities associated with this clean up. The Advanced Testing Line for Actinide Separations (ATLAS) at Los Alamos serves as a developmental test bed for integrating flow sheet development of nitric acid waste streams with process analytical chemistry and process control techniques. The wastes require processing in glove boxes because of the radioactive components, thus adding to the difficulties of making analytical measurements. Process analytical chemistry methods provide real-time chemical analysis in support of existing waste stream operations and enhances the development of new waste stream polishing initiatives. The instrumentation and methods being developed on ATLAS are designed to supply near-real time analyses on virtually all of the chemical parameters found in nitric acid processing of actinide waste. These measurements supply information on important processing parameters including actinide oxidation states, free acid concentration, interfering anions and metal impurities.
Chemistry in Space presents an analysis of the chemical constitution of space, particularly the particles in the solar wind, of the planetary atmospheres, and the surfaces of the moon and planets. Topics range from space engineering considerations to solar system atmospheres and recovered extraterrestrial materials. Mass spectroscopy in space exploration is also discussed, along with lunar and planetary surface analysis using neutron inelastic scattering. This book is comprised of seven chapters and opens with a discussion on the possibilities for exploration of the solar system by mass spectroscopy, with particular reference to analysis of compositional data on solar system objects such as the Earth and meteorites, asteroids, comets, and interplanetary dust. The reader is then introduced to the project administration, instrument design, and spacecraft integration problems that must be solved to successfully fly a space experiment. The following chapters focus on the atmospheres of the sun and planets; the use of mass spectroscopy in solar system exploration and of neutron inelastic scattering in lunar and planetary surface analysis; and extraterrestrial in situ 14 MeV neutron activation analysis. The final chapter is devoted to the advantages and applications of thermal neutron activation to the analysis of certain samples of geological interest. This monograph will be a useful resource for analytical chemists.
Soviet Research on the Lanthanide and Actinide Elements 1949–1957 Analytical Chemistry of the Actinide Elements presents a number of pertinent techniques for the analysis of actinides and provides sufficient information to guide the analyst in modifying procedures to meet special situations. The book begins with an introductory chapter on the discovery of elements 89–103, their oxidation state, and their electronic configuration. Information is provided on the safe handling of radioactive materials (all actinides are radioactive). The use of nuclear techniques in determining trace concentrations of actinides has led to the inclusion of chapters dealing with nuclear instrumentation and nuclear methods. Topics discussed include the preliminary treatment of samples; separations; emission spectroscopy and mass spectrometry; electrochemical, x-ray, and fluorimetric methods; isotopic analysis of uranium and some other actinides; and non-instrumental methods. Thus, the analytical chemist, if he is not already familiar with these techniques, is indoctrinated in a basic amount of nucleonics, to aid him in analyzing unusual materials with unusual techniques.

Experimental and Theoretical Approaches to Actinide Chemistry
Soviet Research on the Lanthanide and Actinide Elements Structural Chemistry of Inorganic Actinide Compounds is a collection of 13 reviews on structural and coordination chemistry of actinide compounds. Within the last decade, these compounds have attracted considerable attention because of their importance for radioactive waste management, catalysis, ion-exchange and absorption applications, etc. Synthetic and natural actinide compounds are also of great environmental concern as they form as a result of alteration of spent nuclear fuel and radioactive waste under Earth surface conditions, during burn-up of nuclear fuel in reactors, represent oxidation products of uranium miles and mine tailings, etc. The actinide compounds are also of considerable interest to material scientists due to the unique electronic properties of actinides that give rise to interesting physical properties controlled by the structural architecture of respective compounds. The book provides both general overview and review of recent developments in the field, including such emergent topics as nanomaterials and nanoparticles and their relevance to the transfer of actinides under environmental conditions. * Covers over 2,000 actinide compounds including materials, minerals and coordination polymers * Summarizes recent achievements in the field * Some chapters reveal (secret) advances made by the Soviet Union during the 'Cold war'
Radiation Problems Associated with the Handling of the Actinide Elements

Analytical Chemistry of Organic Halogen Compounds The hazards connected with the handling of actinide elements are surveyed. Emphasis is placed on Thorium, Uranium, Neptunium, and Plutonium. It is pointed out that the chemical toxicity of the actinides is usually minor when compared with radiochemical toxicity. Inhalation and ingestion are the important routes of entry but direct injection into the blood stream through wounds also requires consideration. Special enclosures, such as glove boxes, function primarily to minimize the risk of inhalation and aid in confinement. The external hazard from actinide elements, primarily due to gamma and fast neutron emission, varies considerably with the element and its source. Irradiated actinides, such as Thorium and Plutonium, usually show an increase in the external hazard from gamma radiation with extent of irradiation.

Process Analytical Chemistry Applied to Actinide Waste Streams The Chemistry of the Actinide and Transactinide Elements is a contemporary and definitive compilation of chemical properties of all of the actinide elements, especially of the technologically important elements uranium and plutonium, as well as the transactinide elements. In addition to the comprehensive treatment of
the chemical properties of each element, ion, and compound from atomic number 89 (actinium) through to 109 (meitnerium), this multi-volume work has specialized and definitive chapters on electronic theory, optical and laser fluorescence spectroscopy, X-ray absorption spectroscopy, organoactinide chemistry, thermodynamics, magnetic properties, the metals, coordination chemistry, separations, and trace analysis. Several chapters deal with environmental science, safe handling, and biological interactions of the actinide elements. The Editors invited teams of authors, who are active practitioners and recognized experts in their specialty, to write each chapter and have endeavoured to provide a balanced and insightful treatment of these fascinating elements at the frontier of the periodic table. Because the field has expanded with new spectroscopic techniques and environmental focus, the work encompasses five volumes, each of which groups chapters on related topics. All chapters represent the current state of research in the chemistry of these elements and related fields.

Treatise on Analytical Chemistry – Part 2, Volume 9 Analytical Chemistry of the Elements Uranium, The Transuranium – Actinide Elements

Design and Application of TIMS-Based Thorium Measurement Methods in the Actinide
Analytical Chemistry Group at Los Alamos National Laboratory Analytical Chemistry of Organic Halogen Compounds presents the procedures applied in the analysis of organic halogen compounds. This book is composed of eight chapters that discuss the methods involved in the production and application of organic halogen compounds and in overcoming contamination problems caused by these compounds. After briefly dealing with the preparation, characteristics, and reactions of organic halogen compounds, this book goes on discussing the fundamental concepts of methods for the detection of halogens in organic compounds, namely, chlorine, bromine, iodine, and fluorine. The following chapter describes the characteristic features, advantages, and disadvantages of ultramicro and submicro chemical methods. A chapter also examines the qualitative and quantitative studies of organic halogen compounds based on the thermal and chemical stability of these compounds. The concluding chapters discuss the interference or interfering effects of halogens and their elimination in the determination of other elements. A list of physical constants of organic halogen compounds of general pharmaceutical and industrial significance is provided. This book is an ideal source for analytical chemists and other workers who are interested in the theoretical bases of the methods.
Analytical Chemistry International Series of Monographs in Analytical Chemistry, Volume 54: Organic Reagents in Metal Analysis focuses on the factors determining the analytical selectivity of complexation
reactions. This book consists of three chapters. Chapter 1 deals with the effects of stability and electronic structure of complexes and formation of mixed ligand complexes on analytical selectivity. The analytical procedures for the accomplishment of many metal analytical tasks are reviewed in Chapter 2. The last chapter provides a tabulated data that facilitates experimental work in the field of metal analysis. This volume is useful to practical analysts and researchers engaged with developments in the field of analytical chemistry and routine metal analyses.

Nuclear Forensics at Los Alamos National Laboratory

Treatise on Analytical Chemistry

Nuclear Science Abstracts This report discusses LANL's actinide analytical chemistry capabilities.

Synthesis of Lanthanide and Actinide Compounds Nuclear Techniques in Analytical Chemistry discusses highly sensitive nuclear techniques that determine the micro- and macro-amounts or trace elements of materials. With the increasingly frequent demand for the chemical determination of trace amounts of elements in materials, the analytical chemist had to search for more sensitive methods of analysis. This book accustoms analytical
chemists with nuclear techniques that possess the desired sensitivity and applicability at trace levels. The topics covered include safe handling of radioactivity; measurement of natural radioactivity; and neutron activation analysis. The positive ion and gamma ray activation analysis; isotope dilution and tracer investigations of analytical techniques; and geo- and cosmochronology and miscellaneous nuclear techniques are also elaborated in this text. This publication is intended for analytical chemists, but is also valuable to students intending to acquire knowledge on nuclear techniques and analytical methods in chemistry.

Analytical Applications of EDTA and Related Compounds

The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years.
Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35,000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility.

Nuclear Techniques in Analytical Chemistry Analytical Chemistry, Volume 24: The Analytical Chemistry of the Noble Metals describes the procedures for the separation, extraction, and analysis of noble metals. This book is composed of seven chapters, and begins with a survey on the influence of metallurgical factors on the susceptibility of platinum and gold metals to various corrosive agents. The succeeding chapter provides the methods of isolation of osmium and ruthenium from associated platinum metals and from base metals. A chapter examines the application of gravimetric methods for the separation of seven noble metals, including ruthenium, osmium, rhodium, iridium, palladium, platinum, and gold. Other chapters consider the procedures for volumetric, spectrophotometric, and spectrochemical analysis of noble metals. The concluding chapter describes the features and attributes
of the equipment for noble metal analysis. This book is of value to analytical chemists and workers and researchers in metallurgy.

The Chemistry of the Actinides International Series in Analytical Chemistry, Volume 46: Chemical Analysis of Additives in Plastics, Second Edition brings together numerous investigations on the characterization, identification, and determination of various types of additives in plastics. This book is divided into five chapters. Chapters 1 and 2 describe first the methods for examining additives present in polymers based on either direct spectroscopy of a cast polymer film or on solvent extraction of total additives from the polymer followed by quantitative chemical or physical analysis for various components in the extract. Chapter 3 discusses the application of thin-layer and column chromatography to the separation and determination of known additives. Chapters 4 and 5 examine the application of combined chromatographic and spectroscopic techniques for the separation and determination of unknown plastics additives. This book will prove useful to plastics manufacturers, researchers, institutions, and universities.

Treatise on Analytical Chemistry

Chemical Analysis of Additives in Plastics

Surpassing its bestselling predecessors, this thoroughly updated third edition is designed
to be a powerful training tool for entry-level chemistry technicians. Analytical Chemistry for Technicians, Third Edition explains analytical chemistry and instrumental analysis principles and how to apply them in the real world. A unique feature of this edition is that it brings the workplace of the chemical technician into the classroom. With over 50 workplace scene sidebars, it offers stories and photographs of technicians and chemists working with the equipment or performing the techniques discussed in the text. It includes a supplemental CD that enhances training activities. The author incorporates knowledge gained from a number of American Chemical Society and PITTCOn short courses and from personal visits to several laboratories at major chemical plants, where he determined firsthand what is important in the modern analytical laboratory. The book includes more than sixty experiments specifically relevant to the laboratory technician, along with a Questions and Problems section in each chapter. Analytical Chemistry for Technicians, Third Edition continues to offer the nuts and bolts of analytical chemistry while focusing on the practical aspects of training.

Analytical Chemistry in Space The Chemistry of the Actinides contains selected chapters from the Comprehensive Inorganic Chemistry to meet the needs of certain specialists in this
field. The book describes the 14 elements after actinium in the Periodic Table, known as the actinide elements or the 5f transition series. The book notes the occurrence, separation, chemical properties, chemical structures, and preparation of the metals. In a discussion of analytical chemistry, the radioactive properties of the actinides and the lanthanides are compared. The text then describes the nuclear or radiochemical records and chemical properties of the different members of the actinide series such as thorium, uranium, plutonium, and einsteinium. The book also explains the differences between the 5f shell and the 4f shell. One paper then discusses the groups of alloy compounds, including rare earths and intra-actinides. Another paper examines the general properties of actinide ions as to their electronic structure and oxidation states; the stability and preparation of the different oxidation states; and the applicability of solvent extraction in separating and purifying various substances. The text is suitable for researchers in organic chemistry, nuclear and atomic physicists, scientists, and academicians whose work involves radioactive materials.

The Chemistry of the Actinide Elements

Analytical Chemistry of the Actinide Elements
Soviet Research on the Lanthanide and Actinide Elements The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountability verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

Actinide Analytical Chemistry Capabilities
-Los Alamos National Laboratory
Lanthanide and Actinide Chemistry Analytical Applications of EDTA and Related Compounds examines the analytical applications of ethylenediaminetetra-acetic acid (EDTA) and related compounds. This book also considers the "passive role of these substances, that is, their screening (masking) properties, which greatly improve the selectivity of the reactions in common use. This text consists of six chapters organized into two sections. The first part deals with the uses of EDTA and its derivatives in some fields of chemical analysis. After providing an overview of the history behind the development of EDTA as an analytical reagent, this book discusses to the nature of equilibria of complexes and the methods used in their investigation. The next chapter is dedicated to the reactions of "classical gravimetric analysis, including the precipitation reactions by means of organic reagents. The chapter on colorimetry includes a section on "colored complexing agents, which can be used also in colorimetric determinations of some elements. This text concludes by evaluating the use of EDTA as a masking agent in colorimetry. This book will
be of interest to students and practitioners working in analytical chemistry and related disciplines, including polarography, chromatography, electrophoresis, flame photometry, and qualitative analysis.

Copyright code:
3e4d3ffa8679017c5e038415d6e71bfc