Organic Spectroscopy is an invaluable reference for the interpretation of various spectra. It can be used as a basic text for undergraduate and postgraduate students of spectroscopy as well as a practical resource by research chemists. The book will be of interest to chemists and analysts in academia and industry, especially those engaged in the synthesis and analysis of organic compounds including drugs, drug intermediates, agrochemicals, polymers and dyes.

Organic Structure Analysis, Second Edition, is the only text that teaches students how to solve structures as they are solved in actual practice. Ideal for advanced undergraduate and graduate courses in organic structure analysis, organic structure identification, and organic spectroscopy, it emphasizes real applications-integrating theory as needed - and introduces students to the latest spectroscopic methods.

The derivation of structural information from spectroscopic data is now an integral part of organic chemistry courses at all Universities. A critical part of any such course is a suitable set of problems to develop the student's understanding of how structures are determined from spectra. Organic Structures from Spectra, Fifth Edition provides a comprehensive set of problems to help students master the art of writing reasonable organic reaction mechanisms.
The solutions manual for Spectrometric Identification of Organic Compounds is a carefully chosen set of more than 280 structural problems employing the major modern spectroscopic techniques, a selection of 27 problems using 2D-NMR spectroscopy, more than 20 problems specifically dealing with the interpretation of spin-spin coupling in proton NMR spectra and 8 problems based on the quantitative analysis of mixtures using proton and carbon NMR spectroscopy. All of the problems are graded to develop and consolidate the student's understanding of organic spectroscopy. The accompanying text is descriptive and only explains the underlying theory at a level which is sufficient to tackle the problems. The text includes condensed tables of characteristic spectral properties covering the frequently encountered functional groups. The examples themselves have been selected to include all important common structural features found in organic compounds and to emphasise connectivity arguments. Many of the compounds were synthesised specifically for this purpose. There are many more easy problems, to build confidence and demonstrate basic principles, than in other collections.

The fifth edition of this popular textbook:
- includes more than 250 new spectra and more than 25 completely new problems;
- now incorporates an expanded suite of new problems dealing with the analysis of 2D NMR spectra (COSY, CH Correlation spectroscopy, HMBC, NOESY and TOCSY);
- has been expanded and updated to reflect the new developments in NMR and to retire older techniques that are no longer in common use;
- provides a set of problems dealing specifically with the quantitative analysis of mixtures using NMR spectroscopy;
- features proton NMR spectra obtained at 200, 400 and 600 MHz and 13C NMR spectra include DEPT experiments as well as proton-coupled experiments;
- contains 6 problems in the style of the experimental section of a research paper and two examples of fully worked solutions.

Organic Structures from Spectra, Fifth Edition will prove invaluable for students of Chemistry, Pharmacy and Biochemistry taking a first course in Organic Chemistry.

Contents

Preface
Introduction
Ultraviolet Spectroscopy
Infrared Spectroscopy
Mass Spectrometry
Nuclear Magnetic Resonance Spectroscopy
2DNMR Problems
Index

Reviews from earlier editions

Your book is becoming one of the go to books for teaching structure determination here in the States. Great work! I would definitely state that this book is the most useful aid to basic organic spectroscopy teaching in existence and I would strongly recommend every instructor in this area to use it either as a source of examples or as a class textbook.

Magnetic Resonance in Chemistry

Over the past year I have trained many students using problems in your book - they initially find it as a task. But after doing 3-4 problems with all their brains activities working out the rest of the problems become a mania. They get addicted to the problem solving and every time they solve a problem by themselves, their confident level also increases.

I am teaching the fundamentals of Molecular Spectroscopy and your books represent excellent sources of spectroscopic problems for students.

An Introduction to Spectroscopic Methods for the Identification of Organic Compounds, Volume 2 covers the theoretical aspects and some applications of certain spectroscopic methods for organic compound identification. This book is composed of 10 chapters, and begins with an introduction to the structure determination from mass spectra. The subsequent chapter presents some mass spectrometry seminar problems and answers. This presentation is followed by discussions on the problems concerning the application of UV spectroscopy and electron spin resonance spectroscopy. Other chapters deal with some advances and development in NMR spectroscopy and the elucidation of structural formula of organic compounds by a combination of spectral methods. The final chapter surveys seminar problems and answers in the identification of organic compounds using NMR, IR, UV and mass spectroscopy. This book will prove useful to organic and analytical chemists.

Guide to Spectroscopic Identification of Organic Compounds is a practical "how-to" book with a general problem-solving algorithm for determining the structure of a molecule from complementary spectra or spectral data obtained from MS, IR, NMR, or UV spectrophotometers. Representative compounds are analyzed and examples are solved. Solutions are eclectic, ranging from simple and straightforward to complex. A picture of the relationship of structure to physical properties, as well as to spectral features, is provided. Compounds and their derivatives, structural isomers, straight-chain molecules, and aromatics illustrate predominant features exhibited by different functional groups. Practice problems are also included. Guide to Spectroscopic Identification of Organic Compounds is a helpful and convenient tool for the analyst in interpreting organic spectra. It may serve as a companion to any organic textbook or as a spectroscopy reference; its size allows practitioners to carry it along when other tools might be cumbersome or expensive.
INTRODUCTION TO SPECTROSCOPY, 5e, by Donald L. Pavia, Gary M. Lampman, George A. Kriz, and James R. Vyvyan. Whether you use the book as a primary text in an upper-level spectroscopy course or as a companion book with an organic chemistry text, your students will receive an unmatched, systematic introduction to spectra and basic theoretical concepts in spectroscopic methods. This acclaimed resource features up-to-date spectra; a modern presentation of one-dimensional nuclear magnetic resonance (NMR) spectroscopy; an introduction to biological molecules in mass spectrometry; and coverage of modern techniques alongside DEPT, COSY, and HECTOR. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

This introductory textbook covers all the major spectroscopic techniques that cover the derivation of structural information from spectroscopic data. It incorporates over 200 carefully selected problems that are graded to develop and consolidate the students understanding of organic spectroscopy and to develop an understanding of how structures are derived. This, the third edition has been thoroughly revised and updated and reflects the many developments in this area. It includes over 50 new problems and presents challenging examples that have been carefully selected to include all-important structural features and to emphasise connectivity arguments. More emphasis on techniques is included in the problems and the advanced NMR topics section is expanded in the areas of decoupling and applications of the nuclear overhauser effect (nOe). Brief and easy-to-read text providing sufficient detail of theory to be able to solve problems without going to excessive depth. Large, graded selection of problems from the very easy to challenging. Provides hands-on training for the non-expert.

Kurti and Czako have produced an indispensable tool for specialists and non-specialists in organic chemistry. This innovative reference work includes 250 organic reactions and their strategic use in the synthesis of complex natural and unnatural products. Reactions are thoroughly discussed in a convenient, two-page layout--using full color. Its comprehensive coverage, superb organization, quality of presentation, and wealth of references, make this a necessity for every organic chemist. * The first reference work on named reactions to present colored schemes for easier understanding * 250 frequently used named reactions are presented in a convenient two-page layout with numerous examples * An opening list of abbreviations includes both structures and chemical names * Contains more than 10,000 references grouped by seminal papers, reviews, modifications, and theoretical works * Appendices list reactions in order of discovery, group by contemporary usage, and provide additional study tools * Extensive index quickly locates information using words found in text and drawings.

Though the format evolved in the first edition remains intact, relevant new additions have been inserted at appropriate places in various chapters of the book. Also included are a number of sample and study problems at the end of each chapter to illustrate the approach to problem solving that involve translations of sets of spectra into chemical structures. Written primarily to stimulate the interest of students in spectroscopy and make them aware of the latest developments in this field, this book begins with a general introduction to electromagnetic radiation and molecular spectroscopy. In addition to the usual topics on IR, UV, NMR and Mass spectrometry, it includes substantial material on the currently useful techniques such as FT-IR, FT-NMR 13C-NMR, 2D-NMR, GC/MS, FAB/MS, Tendem and Negative Ion Mass Spectrometry for students engaged in advanced studies. Finally it gives a detailed account on Optical Rotatory Dispersion (ORD) and Circular Dichroism (CD).

This book is characterized by its problem-solving approach with extensive reference charts and tables. First published in 1962, this was the first book on the identification of organic compounds using spectroscopy. Now considered a classic, it can be found on the shelf of every Organic Chemist. The key strength of this text is the extensive set of real-data problems in Chapters 8 and 9. Even professional chemists use these spectra as reference data. Spectrometric Identification of Organic Compounds is written by and for organic chemists, and emphasizes the synergistic effect resulting from the interplay of the spectra.
chemical compounds in a wide range of disciplines. For spectroscopic information, correlation charts are far more easily used than tables, especially for scientists and students whose own areas of specialization may lie elsewhere. The CRC Handbook of Fundamental Spectroscopic Correlation Charts provides a collection of spectroscopic information and unique correlation charts for use in the interpretation of spectroscopic measurements. The handbook presents useful analysis and assignment of spectra and structural elucidation of organic and organometallic molecules. The correlation charts are compiled from an extensive search of spectroscopic literature and contain current, detailed information that includes new results for many compounds. The handbook includes graphical data charts for nuclear magnetic resonance spectroscopy of the most useful nuclei, as well as infrared and ultraviolet spectrophotometry. Because mass spectrometry data is not best represented graphically, the data are presented in tabular form, where mass spectrometry can be used for analyses and structural determinations in tandem with other techniques. In addition to presenting absorption bands and intensities for a variety of important functional groups and chemical families, the book also discusses instrument calibration, diagnostics, common solvents, fragmentation patterns, several practical conversion tables, and laboratory safety. Not intended to replace reference works that provide exhaustive spectral charts on specific compound classes, this book fills the need for fundamental charts that are needed on a general, day-to-day basis. The CRC Handbook of Fundamental Spectroscopic Correlation Charts is an ideal laboratory companion for students and professionals in academic, industrial, and government labs.

Intended for students of intermediate organic chemistry, this text shows how to write a reasonable mechanism for an organic chemical transformation. The discussion is organized by types of mechanisms and the conditions under which the reaction is executed, rather than by the overall reaction as is the case in most textbooks. Each chapter discusses common mechanistic pathways and suggests practical tips for drawing them. Worked problems are included in the discussion of each mechanism, and “common error alerts” are scattered throughout the text to warn readers about pitfalls and misconceptions that bedevil students. Each chapter is capped by a large problem set.
the initial observation of proton magnetic resonance in water and in paraffin, the discipline of nuclear magnetic resonance has seen unparalleled growth as an analytical method. Modern NMR spectroscopy is a highly developed, yet still evolving, subject which finds application in chemistry, biology, medicine, materials science and geology. In this book, emphasis is on the more recently developed methods of solution-state NMR applicable to chemical research, which are chosen for their wide applicability and robustness. A considerable amount of information and guidance is given on the implementation and execution of the techniques described in this book.

With the advent of Fourier transform spectrometers of great sensitivity, it has become practical to obtain carbon-13 nuclear magnetic resonance (C-13 NMR; 13C NMR; CMR) spectra routinely on organic molecules, and this technique has become one of the highest utility in determining structures of organic unknowns. When the usual spectrometric techniques proton magnetic resonance (H-1 NMR; 1H NMR; PMR), infrared (IR), mass (MS), and ultraviolet (UV)-do not readily reveal a compound's structure, a C-13 NMR spectrum will often provide sufficient additional information to yield it unequivocally. With this in mind, the present work was designed to give advanced undergraduates, graduate students, and practicing chemists a working knowledge of and facility with the use of this valuable technique. Some familiarity with other spectrometric techniques is assumed (recommended book: Silverstein, Bassler, and Morrill, Spectrometric Identification of Organic Compounds), but no prior knowledge of C-13 NMR - which is treated very lightly, if at all, in the widely used elementary organic texts - is necessary. A discussion of C-13 NMR spectroscopy is followed by 125 problems, each consisting of a molecular formula, two types of C-13 NMR spectra (partially and completely proton decoupled, with connecting lines to facilitate multiplicity assignments), an integrated H-1 NMR spectrum, and the most important IR, UV, and MS data. These problems have been very carefully prepared, thoroughly tested by students at the University of Arizona, and we believe that very few errors remain.

At a point where most introductory organic chemistry texts end, this problems-based workbook picks up the thread to lead students through a graduated set of 120 problems. With extensive detailed spectral data, it contains a variety of problems designed by renowned authors to develop proficiency in organic structure determination. This workbook leads you from basic problems encountered in introductory organic chemistry textbooks to highly complex natural product-based problems. It presents a concept-based learning platform, introducing key concepts sequentially and reinforcing them with problems that exemplify the complexities and underlying principles that govern each concept. The book is organized in such a way that allows you to work through the problems in order or in selections according to your experience and desired area of mastery. It also provides access to raw data files online that can be downloaded and used for data manipulation using freeware or commercial software. With its problem-centered approach, integrated use of online and digital resources, and appendices that include notes and hints, Problems in Organic Structure Determination: A Practical Approach to NMR Spectroscopy is an outstanding resource for training students and professionals in structure determination.

This detailed treatise is written for chemists who are not NMR spectroscopists but who wish to use carbon-13 NMR spectroscopy. It shows why measurement of carbon-13 NMR is needed and explains how the method can - or should - be used for rapid characterization of flavonoids, one of the most diverse and widespread groups of natural constituents. The first part of the book presents background information and discussion of the essential aspects of flavonoids and carbon-13 NMR spectroscopy and demonstrates its significant role in the revision of several earlier established chemical structures. It discusses various one- and two-dimensional NMR spectroscopic techniques and other relevant experimental methodologies for the interpretation of spectral details which enable individual resonance lines to be associated with the appropriate carbons in a molecule. The second part provides a comprehensive coverage of the carbon-13 chemical shift data for flavonoids and other related compounds, which are presented in the form of tables and charts. It also includes a detailed discussion of the application of carbon-13 NMR spectroscopy in the characterization of natural products, with examples of successful applications in the field of organic chemistry.
shifts of various classes and subclasses of flavonoids. It also illustrates how to utilize carbon-13 data to gain information for the determination of the nature, number and site of any substituent in flavonoids. Vital information for the differential and complete structure elucidation of the various classes of flavonoids by carbon-13 NMR shielding data is described in-depth in the third part of the book. The book will be welcomed by all those working in natural product chemistry who will appreciate the non-mathematical approach and the fact that such a wealth of theoretical and practical information has been assembled in a single volume.

Market_Desc: Organic and Analytical in the Forensics, Chemical and Pharmaceutical Industries

Special Features:
- A how-to, hands-on teaching manual
- Considerably expanded NMR coverage—NMR spectra can now be interpreted in exquisite detail
- New chapters on correlation NMR spectrometry (2-D NMR) and spectrometry of other important nuclei
- Uses a problem-solving approach with extensive reference charts and tables
- An extensive set of real-data problems offers a challenge to the practicing chemist

About The Book: The book provides a thorough introduction to the three areas of spectrometry most widely used in spectrometric identification: mass spectrometry, infrared spectrometry, and nuclear magnetic resonance spectrometry. First published over 40 years ago, this was the first text on the identification of organic compounds using spectroscopy. This text is now considered to be a classic. This text presents a unified approach to the structure determination of organic compounds based largely on mass spectrometry, infrared (IR) spectroscopy, and multinuclear and multidimensional nuclear magnetic resonance (NMR) spectroscopy. The key strength of this text is the extensive set of practice and real-data problems (in Chapters 7 and 8). Even professional chemists use these spectra as reference data. Spectrometric Identification of Organic Compounds is written by and for organic chemists, and emphasizes the synergistic effect resulting from the interplay of the spectra. This book is characterized by its problem-solving approach with extensive reference charts and tables. The 8th edition of this text maintains its student-friendly writing style throughout has been updated for consistency and to be more reflective of modern usage and methods. Chapter 3 on proton NMR spectroscopy has been overhauled and updated. Also, new information on polymers and phosphorus functional groups has been added to Chapter 2 on IR spectroscopy.

Table -- Combination tables -- 13C NMR spectroscopy -- 1H NMR specroscopy -- IR spectroscopy -- Mass spectrometry -- UV/Vis spectroscopy.

Although numerical data are, in principle, universal, the compilations presented in this book are extensively annotated and interleaved with text. This translation of the second German edition has been prepared to facilitate the use of this work, with all its valuable detail, by the large community of English-speaking scientists. Translation has also provided an opportunity to correct and revise the text, and to update the nomenclature. Fortunately, spectroscopic data and their relationship with structure do not change much with time so one can predict that this book will, for a long period of time, continue to be very useful to organic chemists involved in the identification of organic compounds or the elucidation of their structure. Klaus Biemann Cambridge, MA, April 1983

Preface to the First German Edition

Making use of the information provided by various spectroscopic techniques has become a matter of routine for the analytically oriented organic chemist. Those who have graduated recently received extensive training in these techniques as part of the curriculum while their older colleagues learned to use these methods by necessity. One can, therefore, assume that chemists are well versed in the proper choice of the methods suitable for the solution of a particular problem and to translate the experimental data into structural information.

Teaches identification of organic compounds from complementary information concerning the following spectra: mass, infrared, proton NMR, 13C NMR, and UV. Covers each area of spectrometry, demonstrates the integration of all information in structure elucidation, and presents sets of spectra for solution. Includes extensive reference tables and charts.
Originally published in 1962, this was the first book to explore the identification of organic compounds using spectroscopy. It provides a thorough introduction to the three areas of spectrometry most widely used in spectrometric identification: mass spectrometry, infrared spectrometry, and nuclear magnetic resonance spectrometry. A how-to, hands-on teaching manual with considerably expanded NMR coverage—NMR spectra can now be interpreted in exquisite detail. This book:

- Uses a problem-solving approach with extensive reference charts and tables.
- Offers an extensive set of real-data problems to offer a challenge to the practicing chemist.

This book is the revision of a widely-respected book on spectroscopy. The book covers all four areas of organic spectroscopy including NMR, MS, electronic (including CD and optical rotary dispersion), and vibrational (which also includes Raman). The book is the most complete and comprehensive treatment on the subject. It covers currently used techniques for determining the structure of organic and biological compounds. It also has a strong emphasis on problem solving and is distinctly pedagogical. This book is ideal for any practicing or future organic or biochemist.